43 research outputs found

    High-fidelity, broadband stimulated-Brillouin-scattering-based slow light using fast noise modulation

    Full text link
    We demonstrate a 5-GHz-broadband tunable slow-light device based on stimulated Brillouin scattering in a standard highly-nonlinear optical fiber pumped by a noise-current-modulated laser beam. The noise modulation waveform uses an optimized pseudo-random distribution of the laser drive voltage to obtain an optimal flat-topped gain profile, which minimizes the pulse distortion and maximizes pulse delay for a given pump power. Eye-diagram and signal-to-noise ratio (SNR) analysis show that this new broadband slow-light technique significantly increases the fidelity of a delayed data sequence, while maintaining the delay performance. A fractional delay of 0.81 with a SNR of 5.2 is achieved at the pump power of 350 mW using a 2-km-long highly nonlinear fiber with the fast noise-modulation method, demonstrating a 50% increase in eye-opening and a 36% increase in SNR compared to a previous slow-modulation method

    Discrete Sine Transform-Based Interpolation Filter for Video Compression

    No full text
    Fractional pixel motion compensation in high-efficiency video coding (HEVC) uses an 8-point filter and a 7-point filter, which are based on the discrete cosine transform (DCT), for the 1/2-pixel and 1/4-pixel interpolations, respectively. In this paper, discrete sine transform (DST)-based interpolation filters (DST-IFs) are proposed for fractional pixel motion compensation in terms of coding efficiency improvement. Firstly, a performance of the DST-based interpolation filters (DST-IFs) using 8-point and 7-point filters for the 1/2-pixel and 1/4-pixel interpolations is compared with that of the DCT-based IFs (DCT-IFs) using 8-point and 7-point filters for the 1/2-pixel and 1/4-pixel interpolations, respectively, for fractional pixel motion compensation. Finally, the DST-IFs using 12-point and 11-point filters for the 1/2-pixel and 1/4-pixel interpolations, respectively, are proposed only for bi-directional motion compensation in terms of the coding efficiency. The 8-point and 7-point DST-IF methods showed average Bjøntegaard Delta (BD)-rate reductions of 0.7% and 0.3% in the random access (RA) and low delay B (LDB) configurations, respectively, in HEVC. The 12-point and 11-point DST-IF methods showed average BD-rate reductions of 1.4% and 1.2% in the RA and LDB configurations for the Luma component, respectively, in HEVC

    Application of Backstep Coanda Flap for Supersonic Coflowing Fluidic Thrust-Vector Control

    No full text

    Families of non-congruent numbers with odd prime factors of the form 8k+3

    No full text
    A congruent number is a positive integer which can be represented as the area of a right triangle such that all of its side lengths are rational numbers. The problem determining whether a given number is congruent is usually studied by computing the Mordell-Weil rank of the corresponding elliptic curve. The Monsky matrix gives a way to compute efficiently the 2-Selmer rank, thereby gives an upper bound for the Mordell-Weil rank. In this paper, by using Monsky's matrix, we present new families of non-congruent numbers such that all of their odd prime factors are of the form 8k+3. Our result generalizes previous works of Reinholz-Spearman-Yang [12] and Cheng-Guo [3]. (C) 2021 Elsevier Inc. All rights reserved
    corecore